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LE'ITER TO THE EDITOR 

Absence of phase transitions in self-dual Ising models with 
multisite interactions and a field 

James L Monroe 
Department of Physics, Beaver Campus, Penn State University, Monaca, PA 15061, USA 

Received 30 March 1990 

Abstract. We investigate Ising spin systems having a single translationally invariant multi- 
spin interaction and an external magnetic field. These models are self-dual and for certain 
intervals of the self-dual line Heringa, BIote and Hoogland have very recently obtained 
by Monte Carlo simulations evidence for a first-order phase transition. We find intervals 
of the self-dual line where one can rigorously prove the absence of a phase transition 
(these areas d o  not contradict the Monte Carlo results). We do this by looking at the zeros 
of the partition function. 

In a very recent article Heringa et a1 [ l ]  investigated a number of two- and three- 
dimensional Ising models with multispin interactions and a field. Using Monte Carlo 
simulations they established the presence of a first-order phase transition in these 
models when the field is non-zero. In particular they considered square and cubic 
lattice systems where on each lattice site there was a spin taking on values *le The 
spins interacted through multisite couplings and a field, described by the reduced 
Hamiltonian 

n - 1  

kT I i = O  I 

2 
- = - K C  n S , + , - H C S ,  

where r and r + ai denote the position of the spin sites and the n vectors ai specify 
the multisite interactions. The models have been shown to be self-dual [2] and the 
self-dual line is given by 

sinh(2K) sinh(2H) = 1. (2) 
It is along a portion of this self-dual line that the presence of a first-order phase 
transition was found. 

Heringa et a1 point out that the present author [3] has shown that for sufficiently 
small K there is no phase transition. These results were part of some work considering 
the location of the zeros of the partition function for a variety of Ising systems some 
of which had multisite interactions. Due to the interesting results of [ 11 we reconsider 
the problem of the zeros of the partition function for these systems. While in the 
previous paper for multisite interaction systems we looked only for values of K where 
for all H there was no phase transition, we now look at the entire positive H - K  plane. 
One outcome of this is that, besides proving that there are sufficiently small K for 
which no phase transition exists for all H, we prove that there are sufficiently large H 
for which no phase transition exists for all K.  Also we expand the region of the self-dual 
line where no phase transition occurs. Our results are in agreement with those of [l] 
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in that the region where phase transitions are found by Monte Carlo methods lie 
outside those regions where we can show rigorously that there is an absence of a phase 
transition. A more quantative comparison is made in our concluding remarks. 

Heringa et a1 consider six specific models. Three of their models involve four-site 
interaction systems and we present our results only for four-site interaction systems. 
Similar results, however, can be obtained for other multisite systems, in particular the 
three- and five-site systems of [ 11. As in [3] we will use two theorems of Ruelle which 
we now state. The theorems are best stated in lattice gas language where a site is 
occupied (unoccupied) if Si = +1 (Si = -1). Let A be a set of sites and P be the partition 
function for A. Define zi = exp(2Hi) where Hi is the reduced field at the ith site. Then 
zi is the activity of the ith site. The partition function is 

P ( z l , . . . , z N ) =  C exp(-pU(W) n z, (3) 
X E A  x e x  

where X is then the set of occupied sites. The main theorem of Ruelle follows. 

Theorem 1 .  Let A' and A" be two finite sets of sites and P' and P" be the partition 
functions for the two sets of sites. It is assumed there exist closed subsets M :  of the 
complex z plane such that Oi! M: and P'Z  0 when 

zki! M :  

for all x E A'. Similar assumptions hold for P". Define 

P =  exp(-pU(XnA')-pU(XnA'')) n z,. 
X c A ' u  A" X P X  

Then P # 0 when 

(4) 

where 

- M : M :  = {-z:zf: z: E M: and z: E M:}. ( 6 )  

As stated in [3] there are two difficulties concerning the use of this theorem. One 
is the difficulty of determining - M : M :  and the other is that the zj are independent 
of each other, whereas we are usually interested in the case where all zj are the same 
since all Hj are the same. The regions M: are much more difficult to find if the zj are 
all independent. The next theorem of Ruelle [4], based on a theorem of Grace, allows 
one to set all zj equal to one another in special cases. 

neorem 2. Let Q ( z )  be a polynomial of degree n with complex coefficients and 
P ( z , ,  . . . , z,) a polynomial which is symmetric in its arguments, of degree I in each, 
and such that 

P ( z , .  . . , z )  = Q ( z ) .  

If the roots of Q are all contained in a closed circular region M, and z ,  iZ M, . . . , z, e M, 
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then P ( z ,  , . . . , z , )  # 0. A closed circular region is the inside or outside of a circle or 
a half-plane. 

Thus what one does to find the zeros of the partition function of a system is to 
start with two small subsystems A' and A" for which one has some knowledge of the 
zeros of P'( z) and P"( z) and then combine the two systems to form a bigger system. 
Theorem 1 then allows one to say something about the zeros of the new, bigger system. 
One continues this process eventually building up  the full system. Each time two 
systems are combined to form one we say that the sites in A' A A'' are contracted which 
means the set product defined by equation (6) must be taken. 

If we look at a set of m sites having only an m-site interaction and a field the 
partition function will have the symmetry required by theorem 2. For example, our 
four-site system with a distinct field on each site will have the reduced Hamiltonian 

%'/ kT = -KS, S2S3S4 - HI SI - HZS, - H3S3 - H4S4 (7) 

which results in a partition function with the necessary symmetry. Note that our system 
is indpendent of dimension of the lattice and the position of the sites; hence our results 
for the four-site interaction system will include all three models of reference [ l ]  and 
any other spin system with only a four-site translationally invariant interaction. Note 

Figure 1. The complex L plane. The two full circles are the circles on which the zeros of 
the four-site system lie. 
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also that any system with only an m site translationally invariant interaction will require 
on each site (m - 1) contractions to build up the full system. 

We now look explicitly at our four-site interaction system. We take our two initial 
systems A' and A" to be four-site systems each with reduced Hamiltonian (7). In 
Monroe [ 5 ]  it is shown that for a four-site system with four-site interaction the zeros 
lie on two circles each of radius f i  and with centres at hi. When K = 0 all four zeros 
are at z = -1 and as K is increased the zeros move along the four lines emanating 
from that point. At K =cc the zeros are at *(l + d ) i  and +(a- 1)i. 

We now need to find circular regions M which contain the zeros of P ( z ) .  For 
sufficiently small K the zeros are contained in circle 1 of figure 1. This circle is contained 
in the angular region defined by 35714 < 4 < 5 ~ / 4  where 4 is from the polar coordinate 
expression for z, i.e. z = rei'. One set product would extend this angular region to 
where n / 2 <  4 < 35712. To build up our full system we need three contractions on 
each site and hence three set products for which the angular region is bounded by 
0 < 4 < 257. Thus the zeros do not lie on the positive z axis and hence in the complex 
h plane do not lie on the real H axis. Therefore for all H we have no phase transition. 
This is the approach that was taken in [ 3 ]  and referred to in [l]. For our four-site 
interaction system we have no phase transition for 

and all H. This eliminates the possibility of a phase transition in one region of the 
positive H-K plane shown in figure 2.  

K 

Figure 2. The positive H-K plane where the hatched regions have no phase transition. 
The region given by O <  K <fln[(9-6f i ) / (6&!-8)]  and all H is shown as the vertical 
strip with diagonal hatching. The region given by H > 2 In(&!+ 1) and all K is the horizontal 
strip with diagonal hatching. 
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If, however, we look at circle 2 in figure 1 then for all K in the region z < (fi- 1)4 
one has no zeros (again this is after three contractions). In terms of H one has 
H < 2 l n ( f i -  1). Now by the spin-flip symmetry of the four-site interaction one also 
has no zeros in the region where H > 2 In(fi+ 1). This region is also shown in figure 2. 

Both approaches can be refined. Rather than simply take circle 1 of figure 1 which 
just sits within the angular region 3 ~ / 4  < 4 < 5-14 one can find a circle where the 
four zeros sit on the perimeter of the circle. At K = 0 this is a circle of radius 0 since 
all zeros are at z = -1 and as K increases the size of the circle increases. For K in 
the region given by equation (8) one naturally still has the entire real H axis free of 
zeros but for larger K the circle extends outside the angular region necessary to 
guarantee this is true (see circle 1 in figure 3). We cannot then say that the entire real 
H axis is free of zeros; however, we can say that a certain region of the H axis is free 
of zeros. Because we must make three contractions we want to look at z,z2z3z4 where 
zl, z2, 23 and z4 are elements in M. Since we are only concerned about the real H axis 
or in other words the positive z axis we want z1z2z3z4 = r ,  r2r3r4 exp[i(4, + 42 + 43 + 
where 41 + 42 + 43 + 44 = n ( 2 ~ ) ,  n = 0,1,2, . . . . Clearly the points zo and zb shown in 
figure 3 when multiplied together meet this condition as would any product of four 
points on the line at 4 = 3 ~ / 4  or 4 = 5 ~ 1 4 .  The products cover an interval of the z 

Figure 3. The complex z plane where circle has the four zeros of the partition function 
on its perimeter. The location of the zeros would be where the full circles intersect circle 
1.  Circle 2 has the two zeros closest to the origin on its perimeter. 
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axis with )zOl4 giving the minimum value of the interval and 1zAI4 the maximum value. 
One cannot by a product of four values of z in m find a product where 4, + 4, + 43 + 44 = 
n(27r)  which is greater than lzA14. This is because to maximise rlr2r3r4 we might try to 
move z ,  to a point where & I  > this would allow us to increase rl  but we must move 
z , ,  z3 or z4 to keep the condition 4, + 42 + 4, + 44 = n(27r )  satisfied. But it is apparent 
due to the rate of curvature of the circle with respect to the line at 4 = 37r/4 that we 
would be able to increase rl  less than we would be forced to decrease r, ,  r, or r4 and 
therefore we would decrease the value of 1z,z2z3z4). Hence IzA14 is the maximum value 
one can obtain by our three set products if we require the outcome to fall on the 
positive z axis. Thus while we do not have the entire x axis free of zeros we do the 
regions have for which IzI<Izo14 and free of zeros. The resulting zero-free 
region of the positive H - K  plane is shown in figure 4. 

A similar refinement occurs with circle 2 in figure 1. Rather than take the radius 
of circle 2 to be (a-1) as was done in figure 1, we can require circle 2 to be such 
that the two zeros closest to the origin of the z plane lie on its perimeter. This is the 
situation shown in figure 3. Thus the radius of the circle is a function of K and, as 
above, our zero-free region will likewise be a function of K.  The resulting zero-free 
region is shown in figure 4. 

By comparing the zero-free region of the positive H - K  plane shown in figure 4 
with that of the vertical strip of figure 2 we see that we have significantly extended 
the zero-free region from that of [3]. As stated earlier Heringa er a1 [ I ]  investigated 
six models, three of which involved four-site interactions. Using their designations 
these are models 2 , 4  and 5 (for specific descriptions, see [ I ] ) .  To compare our rigorous 
results, establishing where there is the lack of a phase transition, with the Monte Carlo 
results, indicating where there is the presence of a phase transition, we note that H,, 

K 

Figure 4. The positive H-K plane. The zero-free region based on circle 1 is the region 
with diagonal hatching whose boundary is line 1 .  The zero-free region based on circle 2 
is the region with diagonal line whose boundary is line 2. 
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the largest external magnetic field for which a phase transition is indicated in [l], is 
equal to 0.295, 0.239 and is less than 0.14 for models 2, 4 and 5 respectively. Hence 
there is still a wide gap between the two regions. 

For completeness we mention that for the case of H = O  this system and similar 
ones have been considered by a number of authors [6-81. In particular for a system 
with a single translationally invariant multisite interaction (the dimension of the lattice 
is unimportant) it is known that the system can be ‘reduced’ to a collection of small 
independent systems [8]. Hence for H = 0 no phase transition exists. 
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